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Vibrational properties of graphene nanoribbons by first-principles calculations
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We investigated the vibrational properties of graphene nanoribbons by means of first-principles calculations
on the basis of density-functional theory. We confirm that the phonon modes of graphene nanoribbons with
armchair- and zigzag-type edges can be interpreted as fundamental oscillations and their overtones. These
show a characteristic dependence on the nanoribbon width. Furthermore, we demonstrate that a mapping of the
calculated I'-point phonon frequencies of nanoribbons onto the phonon dispersion of graphene corresponds to
an “unfolding” of nanoribbons’ Brillouin zone onto that of graphene. We consider the influence of spin states
with respect to the phonon spectra of zigzag nanoribbons and provide comparisons of our results with past

studies.
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I. INTRODUCTION

The outstanding properties of graphene and graphene-
related structures of nanosize gave rise to extensive theoret-
ical and experimental researches during the last two decades.
Along with the heavily studied carbon nanotubes (CNTSs) an-
other quasi-one-dimensional (1D) nanostructure aroused spe-
cial interest: terminated stripes of graphene, so-called
graphene nanoribbons (GNRs). Recent progress in prepara-
tion of single-layered graphene sheets'™ allows the fabrica-
tion of GNRs through lithographic® techniques, chemical dis-
solving from bulk graphite, and, most recently, the
fabrication of nanoribbons by cutting suitable nanotubes,’
and thus possibly the verification of theoretical predictions
regarding electronic and optical properties. In the course of
such investigations interesting magnetic and electronic
properties,'*!7 quasirelativistic behavior of electrons and the
possibility of band-gap engineering>'#-2° by varying ribbon
widths were shown. These results make GNRs seem prom-
ising for future developments in nanotechnology and nano-
electronics. The propagation of valence electrons in graphene
structures is accompanied by exceptionally strong electron-
phonon coupling.?! The investigation of the vibrational spec-
trum in these materials is thus of fundamental importance for
the electron transport in electronic devices and of great gen-
eral interest.

In this paper, we present our studies of the I'-point
phonons of different armchair and zigzag nanoribbons, ob-
tained through ab initio density-functional theory (DFT) cal-
culations. We found that it is possible to classify the I"-point
phonon modes of hydrogen passivated GNRs into fundamen-
tal oscillations, overtones, and C-H vibrational modes. Fun-
damental oscillations and overtones can be mapped onto the
graphene phonon dispersion by unfolding the GNR Brillouin
zone onto that of graphene. Furthermore, we discuss the de-
pendence of GNR phonon frequencies on the nanoribbon
width.

II. CALCULATIONS

Graphene nanoribbons can, at least in some cases, be un-
derstood as cut and unrolled carbon nanotubes. These geo-
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metric similarities suggest that the phonon spectra of compa-
rable CNTs and GNRs may be similar. On the other hand,
unlike CNTs, nanoribbons possess edges, which have a lower
coordination number and technically, they require special
treatment. A widespread method to take care of the carbon
atoms at the edges in calculations is to passivate the dangling
bonds with single atoms or molecules, mainly hydrogen, in
order to sustain the bonding structure in graphene, i.e., the
aromaticity and the sp? hybridization of the carbon atoms.
Because the diversity in the possibilities to cut out GNRs of
a graphene sheet is larger than to “roll” it into a seamless
cylinder, i.e., carbon nanotubes, the number of edge types is
very large. In this paper, however, we will only consider
nanoribbons with pure armchair- or zigzag-typed edges,
which can be calculated with reasonable computional cost
and are a good starting point for costly research on nanorib-
bons with mixed-type edges. There are various approaches
for the classification of armchair graphene nanoribbons (AG-
NRs) and zigzag nanoribbons (ZGNRs). Some approaches
use a (p,q) (Ref. 18) type classification with two character-
istic integers, similar to the common classification of CNTs,
or a classification that is based on the number of honey-
combs along the ribbon width.?? For the purpose of this pa-
per entirely sufficient is the approach of Fujita et al.,'® where
GNR are classified by their edge type into AGNR and
ZGNR, and giving the number of dimers N in the unit cell
(see Fig. 1). The unit cell with N dimers is extended periodi-
cally along the z direction, resulting in an infinitely long strip
of graphene.

We define the width of a graphene nanoribbon as the dis-
tance between the central points of the outmost dimers (refer
to Fig. 1). The ideal ribbon width, i.e., the width of an unre-
laxed nanoribbon, is dependent on N and given by

1
WAGNR=E(N_ Day (1)
and
3
WZGNR = ?(N— Dag (2)

with the graphene lattice constant a. In our calculations, the
lattice constant of a relaxed sheet of graphene is a
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FIG. 1. (Color online) Structure of (a) a N-AGNR and (b) a
N-ZGNR. In each case one dimer is emphasized in dark gray (red)
and a unit cell is emphasized in gray, respectively. The ideal lattice
constants of the nanoribbons are ¢ gnr=\3a and czgnr=d(. The
corresponding ideal ribbon widths, i.e., the distance between C at-
oms at opposing edges, are given by Eqgs. (1) and (2), respectively.

=2.4656 A. The width of N-ZGNRs with odd N is equiva-
lent to the circumference of an (1\%1’1\77—1) CNT. Thus, these
nanoribbons could be rolled into armchair nanotubes. For
N-ZGNR with even N, however, there are no corresponding
nanotubes. Similarly, the width of N- AGNRS with odd N is
equivalent to the chiral vector of a ( 0) CNT, whereas
AGNRs with even N do not correspond to any nanotube. The
relaxation, however, results in nanoribbon widths slightly be-
low (for AGNRs) or above (for ZGNRs) the values calcu-
lated with these equations (see Tables I and II). These devia-
tions decrease with increasing ribbon width.

We used density-functional theory in the local approxima-
tion form?? to calculate N~-AGNRs and M-ZGNRs with the
number of dimers per unit cell N=7---15 and M=3---14,
respectively. Pseudopotentials were generated with the
Troullier-Martins scheme?* for the following valence-state
configurations: C 2s52(1.49),2p*(1.50); H 1s'(1.25), where

TABLE 1. Lattice constants ¢ and widths w of various relaxed

€~ Cideal

zigzag-edged graphene nanoribbons. A= — is the relative devia-
tion of the calculated lattice constant from the ideal lattice constant
Cidea=2-4656 A. The ideal width was calculated by Eq. (1).

c A w Wideal
N (A) (%) (A) (A)
2 2.461877 -0.15 2.141 2.135
3 2.461083 -0.18 4.286 4.27
4 2.461787 -0.15 6.427 6.406
5 2.462023 -0.14 8.566 8.541
6 2.46277 -0.11 10.702 10.676
7 2.465000 -0.02 12.838 12.811
8 2.46414 -0.06 14.975 14.947
9 2.464095 -0.06 17.113 17.082
10 2.464095 -0.06 19.249 19.217
12 2.464195 -0.06 23.523 23.488
14 2.464649 -0.04 27.794 27.758
16 2.464730 -0.04 32.067 32.029
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TABLE 1I. Lattice constants ¢ and widths w of various relaxed

Cideal

armchair-type graphene nanoribbons. A== o is the relative devia-
tion of the calculated lattice constant from the ideal lattice constant
cldeal—\3a0 427 A. The ideal width was calculated by Eq. (1).

¢ A w Wideal
N (A) (%) (A) (A)
4 4318 1.1 3.653 3.698
5 4.309 0.9 4.885 4931
6 4.308 0.9 6.107 6.164
7 4.296 0.6 7.353 7.3968
8 4.293 0.5 8.587 8.629
9 4.294 0.5 9.809 9.862
10 4.289 0.4 11.056 11.095
11 4.288 0.4 12.185 12.328
12 4.288 0.4 13.511 13.561
13 4.287 0.4 14.753 14.794
14 4.284 0.3 15.988 16.026
15 4.284 0.3 17.212 17.259
16 4.284 0.3 18.454 18.492
17 4.284 0.3 19.689 19.725
20 4.28 0.2 23.381 23.423
21 4.28 0.2 24.609 24.656
22 4.28 0.2 25.846 25.889

the value in parenthesis indicates the pseudopotential core
radii in bohr. The valence electrons were described by a
double-{ basis set plus an additional polarizing orbital. The
localization of the basis followed the standard split scheme
and was controlled by an internal SIESTA (Refs. 25 and 26)
parameter, the energy shift, for which a value of 50 meV was
used. This resulted in basis functions with a maximal exten-
sion of 3.31 A (C) and 3.2 A (H). As SIESTA works with
periodic boundary conditions, the lattice vectors in direction
perpendicular to the nanoribbon axis were scaled in such a
way that the space between periodic images of the nanorib-
bons was at least 20 A in order to prevent interaction be-
tween them. Real-space integrations were performed on a
grid with a fineness of 0.08 A, which can represent plane
waves up to an energy of 270 Ry.

A minimum of 30 k points equally spaced along the 1D
Brillouin zone was used. The phonon calculations were per-
formed with the method of finite differences.?’” We fully re-
laxed the atomic positions of both AGNRs and ZGNRs until
the atomic forces of each atom were less than 0.01 eV/A
and minimized the total energy as function of lattice constant
(refer to Tables I and II). We used a supercell approach with
a 9 X9 X1 supercell and the above parameters to calculate
the phonon dispersion of graphene. These calculations re-
sulted in a I-point frequency for the E,, modes of
1622 cm™'. This is slightly higher than the experimentally
obtained graphene E,, frequency of about 1580 cm™! 28 In
order to achieve a better comparability between our calcu-
lated results and possible experimentally obtained results,
e.g., by use of Raman spectroscopy, we scaled all calculated
frequencies by a constant, such that the E,, mode of our
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calculated graphene phonon dispersion has the same fre-
quency as the experimentally obtained value. The down-
scaled phonon dispersion of graphene is in very good agree-
ment with experimentally obtained results?>* for graphite.

III. RESULTS AND DISCUSSION

Graphene nanoribbons have a large length to width ratio,
which results in a quasi-1D crystal-like behavior and is ex-
pected to lead to confinement effects for the 7 orbital elec-
trons perpendicular to the ribbon axis. It is therefore justified
to regard the nanoribbons as infinitely long in our phonon
calculations. Thus, the phonon wave vector in direction of
the ribbon axis, kj, is quasicontinuous. The ribbon edges
however only allow standing waves perpendicular to the rib-
bon axis and thus induce the boundary condition

kl,n * Wiibbon =1+ T

i(kr-wt

on the phonon wave f(r,f)=A-¢ ), leading to a quan-

tized wave vector

w

‘n (3)

k 1L.n =
Wribbon
with the order of vibration n=0,... ,N—1.

We expect therefore a vibrational behavior similar to that
of an elastic sheet or a chain of N atoms with fixed or free
ends, i.e., the appearance of fundamental vibrations and
overtones. The phonon spectrum of an N-AGNR or N-ZGNR
should comprise of six fundamental modes and 3-2N-6
=6(N-1) overtones. Therefore, in a given phonon spectrum,
we should be able to assign N—1 overtone modes to each
fundamental mode.

A. Armchair nanoribbons

Our calculations yield for each AGNR a I'-point phonon
spectrum consisting of 3m modes, with m the number of
atoms per unit cell. The atomic displacements of these
I'-point modes can be classified into pure longitudinal (L),
transverse (T), or out-of-plane (Z) modes. Each I'-point pho-
non mode can be associated with one of three types which
will be discussed separately: (1) C-H modes resulting from
the passivation with hydrogen, (2) fundamental modes, or (3)
overtones.

1. C-H modes

The four hydrogen atoms in the unit cell of AGNRs give
12 vibrational modes. These modes show large amplitudes of
the hydrogen atoms in contrast to the almost negligibly small
displacements of the carbon atoms. They can be grouped into
six pairs of degenerate modes with different polarizations.
Independent of the nanoribbon width, we find C-H modes at
~750 cm™'. These modes are bond-bending modes, where
the hydrogen atoms move out of plane and the C-H bond
length remains constant. The hydrogen atoms on a particular
edge move in phase and perpendicularly to the C-H bond.
Another pair of out-of-plane bond-bending C-H modes is
found at a frequency of ~880 cm™'; again independent of
the nanoribbon width. Here, the hydrogen atoms at the edge
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FIG. 2. (Color online) (a) Longitudinal-optical and (b)

transverse-optical fundamental mode frequencies of armchair nan-
oribbons. Our calculated phonon frequencies were scaled by a con-
stant factor to achieve a better compatibility of calculations and
experimental values. The dashed line indicates the experimental E,
frequency of graphene.

move out of phase. Similarly, there are two pairs of degen-
erate in-plane bond-bending modes, where the hydrogen at-
oms move perpendicular to the C-H bond. One pair with
in-phase movement of the hydrogen atoms at an edge
(~1100 cm™') and another pair, where the hydrogen dis-
placements are out of phase (~1200 cm™!). In addition,
there are two pairs of stretching modes at ~3100 cm™' (in
phase) and ~3120 cm™! (out of phase).

2. Fundamental modes

In any nanoribbon, a group of six modes can be found that
are equivalent to the six I'-point phonon modes of graphene
with respect to the phonon eigenvectors. The two in-plane
optical modes, in contrast to the graphene optical modes, are
not found to be degenerate: the in-plane transverse-optical
(TO) mode has a higher frequency than the in-plane
longitudinal-optical (LO) mode for each of our studied AG-
NRs.

The frequencies of these modes are displayed in Fig. 2,
together with the frequency of the experimental E,, mode in
graphene. According to Son et al.,’ the nanoribbons can be
classified into families N=3p, N=3p+1, and N=3p+2, with
p a positive integer. The LO-TO splitting found for ribbons
of the N=3p family is about 29 cm™! for the smallest inves-
tigated nanoribbon and about 14 cm™' for the largest one.
For the N=3p+1 family, we found a splitting of
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12—14 cm™! for all investigated nanoribbons. The N=3p
+2 family displays a larger splitting. It is about 46 cm™' for
the 8-AGNR and decreases with increasing ribbon width to a
value of about 27 ¢cm™! for a 20-AGNR. All these LO-TO
splittings should be experimentally measurable. For the LO
modes with N=3p and N=3p+1 and the TO modes an in-
crease in the frequency compared to graphene is found. As
can be seen, the LO frequencies of the (3p+2) nanoribbons
are softened. This can be attributed to the small band gap in
the quasimetallic (3p+2) nanoribbons, which is smaller than
0.294 eV for p>3. This is similar to the LO phonon soften-
ing in metallic carbon nanotubes.’!3> We assume that the
same effect of strong electron-phonon coupling related to a
Kohn anomaly takes place in quasimetallic GNR.3® All
modes converge toward the graphene frequency with in-
creasing width.

3. Overtones

For each fundamental oscillation, we find (N—1) over-
tones, where the fundamental displacement pattern is modi-
fied by an envelope forming a standing wave with x
=1,...,N nodes. The vibrational behavior of these modes
shows similarities to elastic sheets with free ends. The
atomic displacement can be described by an enveloping co-
sine function

fa=A,cosk, x=A, cosix,
1.,n
where # is the order of vibration, k, ,, N ,, and A, refer to
the wave number, the wavelength, and the amplitude of the
nth order vibration. For the wave numbers hold the following
relations:

2

N 4)
)\L,n

kL,n =

T 2ar

wagne (N = l)aon. )
The nodes do not have to coincide with carbon atom posi-
tions in the unit cell. Figure 3 shows the displacement pat-
terns of a 7-AGNR. We characterize the phonon modes by
their direction of vibration (transverse, longitudinal, and out
of plane) and their nature (acoustic and optical) as n-L/T/ZA
and n-L/T/Z0, with n=number of nodes.

B. AGNR modes in relation to graphene

Figure 4 shows the Brillouin zones of graphene, armchair
nanoribbons, and zigzag nanoribbons. The hexagonal struc-
ture with high-symmetry points K and M represents the Bril-
louin zone of graphene with the distances I'K=4/3q, and
I'M=2m/\3a,. As already discussed, the phonon vectors in
nanoribbons are restricted by an edge-induced boundary con-
dition, resulting in N quantized wave numbers k , along the
ribbon width [Eq. (5)]. The component in axial direction
however is unrestricted and not quantized. We find that the
Brillouin zone of graphene nanoribbons consists of N equally
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FIG. 3. (a) LO and (b) TO fundamental and overtone modes at
the I' point of a 7-AGNR. The arrows display the displacements of
the atoms in the unit cell. The displacement strength is normalized
to emphasize the node positions. For the n-L/TO, the eigenvectors
of the atoms reverse n times 0-L/TO across the ribbon width. This is
further clarified by the envelope curves. The wavelength of the
vibrations is )\=%WAGNR.

spaced discrete lines, similar to the Brillouin zone of carbon
nanotubes.’* The line spacing for armchair nanoribbons is,
from Eq. (5), Ak l’n=(]VE_71T)ao’ The translation vector of an

FIG. 4. (Color online) Brillouin zones of graphene, armchair
(10-AGNR) and zigzag (10-ZGNR) nanoribbons. @, and d, are the
lattice vectors of graphene, b 1 and 1;2 are the reciprocal-lattice vec-
tors. Note that the Brillouin zone of ZGNRs is idealized; in actual
nanoribbons it reaches the K-M-K' line only in the limit of large
nanoribbons, see discussion in Sec. III C.
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FIG. 5. (Color online) (a) Mapping of TO (filled squares), LO
(circles), ZO (filled diamonds), TA (open triangles), LA (filled tri-
angles), ZA (pluses) fundamental, and overtone frequencies of an
15-AGNR onto our calculated phonon dispersion of graphene (solid
lines). Longitudinal ribbon modes correspond to transverse
graphene modes. (b) Eigenvectors of selected ribbon TO and LO
frequencies in the I'KM direction. The corresponding modes are
indicated in (a).

armchair nanoribbon is given by dagnr=d;+d,, i.e., the
axial direction of armchair nanoribbons corresponds to the
I’'M direction in graphene. The direction perpendicular to the
ribbon axis corresponds to the I'KM direction. The AGNR
I'-point overtone vibrations therefore correspond to vibra-
tions in the I'KM direction.

Aside from the existence of hydrogen passivation and the
difference of C-C bond lengths between carbon atoms at the
nanoribbon edges and between atoms in the middle of the
nanoribbon due to edge effects, the unit cell of a graphene
nanoribbon is very similar to a supercell of graphene unit
cells. For this reason, we expect that zonefolding of the pho-
non dispersion of graphene yields a reasonable approxima-
tion of the phonon dispersions of nanoribbons, especially for
larger nanoribbons, where edge effects should have a smaller
influence on the phonon dispersions. Therefore, we will
show how to “unfold” the nanoribbon’s Brillouin zone onto
that of a graphene sheet, where the I"-point fundamental and
overtone modes of an AGNR reproduce the graphene modes
along the I'KM direction. For the overtone of the highest
order, i.e., n=N-1, we find from Eq. (5)

2N-D7 2w
 (N-Day  ap’

As can be seen in Fig. 4, [TKM|=2m/ay, thus it should be
possible to reproduce the whole I'KM dispersion of graphene
by nanoribbon I"-point overtones. Figure 5 shows a mapping
of the resulting pairs (k, ,,,) of AGNR I'-point phonon
modes onto the phonon dispersion of graphene. As we de-
fined the longitudinal and transverse directions with respect

kL,N—l
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to the ribbon axis, the nth overtone of a longitudinal ribbon
mode corresponds to a transverse phonon at wave vector k | ,,
in graphene and vice versa.

The overtones of one respective ribbon fundamental mode
reproduce different phonon branches of graphene in I'K and
KM directions. For example, the ribbon TO frequencies re-
produce the graphene LO branch in the I'K direction but then
switch to the graphene TA branch beyond the K point. The
reason for this lies in the strict mode classification applied to
the nanoribbons. We can also understand the branch switch-
ing from the Brillouin zone of graphene (see Fig. 4): going
along I'K and then along KM, the direction of the wave
vector changes by 120°, if one continues to stay in the first
Brillouin zone of graphene. Moreover, it is well known that
close to the K point the phonon modes loose their purely
longitudinal or transverse character. Figure 5(b) shows the
phonon eigenvectors of different overtones of the nanoribbon
modes. It is clearly seen that the overtones near the graphene
K point have a mixed character with displacements in differ-
ent directions [see panels 3 and 4 in Fig. 5(b)]. In total, only
small deviations between the calculated graphene dispersion
and the zonefolded nanoribbon frequencies are found. It is
expected that ribbon frequencies converge toward the
graphene dispersion with increasing ribbon width, a result
which we find confirmed. The root-mean-square deviation
between graphene LO branch and their corresponding ribbon
modes decreases from 59 cm™' (7-AGNR) to 31.5 cm™
(14-AGNR).

In general, the overtones reproduce the graphene phonon
dispersion fairly well, especially for longer wavelengths, i.e.,
near the I" point. The agreement weakens a little for wave-
lengths near the edge of the graphene Brillouin zone, the
nanoribbon’s overtones slightly deviate from the calculated
graphene dispersion branches, as seen in Fig. 5(a). It is con-
ceivable that this slight deviation is due to effects of the
finite structure perpendicular to the nanoribbon axis and the
resulting changes in C-C bond lengths at the nanoribbon
edges. Further, it is apparent from our mapping that the over-
tones do not reproduce the special phonon structure near the
K point. There, the TO mode of graphene displays a notice-
able drop in frequency due to a Kohn anomaly,?!3%3 ie., a
strong electron-phonon coupling. As visible in Fig. 6(a), the
nanoribbon overtones show a poorer reproduction of this
drop of frequency in the surrounding of the graphene K
point. This is understandable because of the semiconducting
nature of the investigated nanoribbons, which would prevent
the formation of Kohn anomalies. In this case, armchair na-
noribbons with smaller band gaps should reproduce the
graphene dispersion near the K point better than AGNRs
with larger gaps. Indeed, our calculations suggest that the
quasimetallic AGNRs of the N=3p+2 family, which have
very small band gaps, give slightly better results than the
ribbons of the other families. As mentioned above, the nan-
oribbon modes change their character from longitudinal to
transverse direction and vice versa when crossing the K
point. In particular, the displacement vectors of the ribbon
LO between K and M show strong similarities with the LA
branch in graphene. Correspondingly, the frequencies agree
well with the LA branch [Fig. 6(a)]. Similarly, the nanorib-
bon TO modes switch in characteristics to TA eigenvectors
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FIG. 6. (Color online) (a) n-LO and (b) n-TO overtones of
N-AGNRs with N=5-15 and n=1 (filled circles), n=3 (empty
squares), n=35 (filled diamonds), n=8 (empty triangles), and n=11
(crosses). Solid black lines are the calculated graphene modes as in
Fig. 5.

when crossing the K point in M direction [Fig. 6(b)]. We find
thus that the overtones of the nanoribbons can be well
mapped onto the graphene dispersion when including the
character of their eigenvectors. In graphene, the overtones
correspond to different branches in the I'-K and K-M parts of
the Brillouin zone.

Overall we encountered difficulties in characterizing
modes close to the graphene K point. The characteristic over-
bending of the graphene LO mode due to a Kohn anomaly at
the I" point is found by zone folding of the ribbon modes,
too, for nanoribbons of sufficient width (N>8). However,
the observed overbending is considerably smaller than the
one in the calculated graphene dispersion.

C. Zigzag nanoribbons

Recent studies show that the ground state of zigzag nan-
oribbons displays antiferromagnetically ordered spin
states.'®1335 Calculations using spin polarization predict the
opening of a band gap for the otherwise metallic ZGNRs and
half-metallic behavior when an electric field is applied due to
the opposite behavior of different spin directions in electric
fields.'> We analyzed the phonon spectra of ZGNRs for ef-
fects due to the band-gap opening by generating a pseudo-
potential including spin polarization with using exactly the
same cutoff radii as the pseudopotentials we used for calcu-
lations neglecting spin polarization. We find excellent agree-
ment with the results of Son et al.'’ regarding the band gap.
While the spin-polarization effects are vital for the electronic
properties, we observe only small effects on the vibrational
frequencies. Our calculated I'-point frequencies differ by just
up to 8 cm™! from calculations neglecting spin polarization.

PHYSICAL REVIEW B 80, 155418 (2009)

For this reason, we did not include spin polarization in the
following phonon calculations.

In order to study the vibrational behavior of zigzag nan-
oribbons, we carried out calculations on N-ZGNRs with N
=3---14 and performed the same rescaling of the calculated
frequencies as was done for AGNRs. A distinction of the
I'-point phonons in fundamental modes, overtones, and C-H
modes (only doubly degenerate pairs at ~750 cm™,
~1100 cm™', and ~3100 cm™' are found) is performed as
for the armchair nanoribbons. The direction perpendicular to
the ribbon axis reproduced by the mapping corresponds to
the I'M direction of graphene, see Fig. 4. The wavelengths of
the vibrations of equivalent carbon atoms over the nanorib-
bon width can be described by

N, = ~WzGNR- (6)
n

By Egs. (2), (4), and (6), we calculate a line spacing of
2 2 2
[
)\n+1 )\n \’3(N— 1)(10

The overtone of highest order, k| y_;, is then

2w 2w
ki noy=Ak (N-1)=—=—"——(N-1)= .
N - \E(N - Day \an
This is equal to the graphene I'-M distance, as [I'M |=\2§—ZO

Therefore, we can, in theory, reproduce the whole I'M of the
graphene dispersion by unfolding the I'-point phonons of
ZGNRs of finite width. On the other hand, we determined
the wavelengths of the overtones of our investigated ribbons
by fitting a cosine function to the respective displacement
patterns and compared them to the theoretically expected
values. For small nanoribbons, we found considerable devia-
tions between the wavelength of the lattice vibration of
graphene at the M point and the smallest wavelength that the
atomic displacements of the nanoribbon can describe, i.e.,
the wavelengths of the highest order overtones. Thus, the
mapping of the Brillouin zone of small nanoribbons cannot
reproduce the whole I'M direction, as k| y_; <ky poimz\%—;.
However, these smallest wavelengths quickly converge to-
ward the graphene M-point wavelength with increasing rib-
bon width. We performed mappings of the phonon modes of
ZGNRs of various widths onto the graphene phonon disper-
sion in the I'M direction (Fig. 7). Again, unfolding the rib-
bon overtones onto the Brillouin zone of graphene shows
good agreement, which improves for increasing ribbon
width. The overtones of highest order of the optical modes of
small nanoribbons appear to be clinched due to the men-
tioned deviations of fitted and theoretically predicted wave-
length. The acoustical modes, however, display a great
agreement of nanoribbon overtones and graphene dispersion.
The ZGNR fundamental mode frequencies correspond to the
six I'-point frequencies of graphene. For ZGNRs we see, in
contrast to AGNRs, a clear separation between the frequen-
cies of in-plane acoustic and optical phonon modes. The in-
plane acoustic modes are found in a frequency interval of
0—1300 cm™', the (in-plane) optical modes lie between 1300
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FIG. 7. (Color online) Mapping of ribbon LO (filled squares),
TO (circles), ZO (filled diamonds), TA (down triangles), LA (filled-
up triangles), ZA (crosses) fundamental, and overtone frequencies
of an 8-ZGNR onto the calculated phonon dispersion of graphene
(solid lines). k, y_; does not reach the graphene M point, as for
ZGNRs of small width, the wavelengths obtained by fitting the
displacement pattern of the calculated phonons are larger than the
theoretically predicted ideal values.

and 1600 cm™! and are straightforward to classify as all of
them are of pure longitudinal or transverse nature. The dis-
placement pattern of ZGNRs shows no apparent mixing of
modes, as found for AGNRs. As mentioned in Sec. III B, the
mixing of modes in AGNRs occurs due to the symmetries at

PHYSICAL REVIEW B 80, 155418 (2009)

the graphene K point. However, there’s no comparable point
in the I'M direction, which is reproduced by the mapping of
the ZGNR Brillouin zones onto the one of graphene.

Figure 8 shows a comparison of in-plane phonon mode
frequencies of N-ZGNRs with N=2---14. As was found for
AGNRs, the 0-LO of the ribbon converges toward the
graphene LO for increasing ribbon width. A similar behavior
is found for the longitudinal-optical overtones. For the fre-
quency of the 0-TO, a nonmonotonic dependence on the rib-
bon width is observed. The calculated frequencies of the
transverse-optical overtones of low order are higher than
those of the 0-TO. Similarly as for the AGNRs we thus find
for ZGNR a (small) overbending for the graphene LO mode
with our zone-folding method, at least for sufficiently large
ribbon widths. The acoustic overtones of both longitudinal
and transverse nature display an inversely proportional width
dependence. In case of transverse overtones, this width de-
pendence is well described by w,. > N~'. Longitudinal acous-
tic overtones, however, show a considerably weakening
width dependence with increasing vibrational order, as can
be seen in Fig. 8(b).

Finally, we calculated the phonon dispersions over the
whole Brillouin zone of various small nanoribbons by means
of a supercell approach. We used a supercell of nine unit
cells along the nanoribbon axis. Figure 9(a) shows the dis-

(b)

Phonon frequency in (cm-l)
I
S

FIG. 8. (Color online) [(a) and
(c)] Calculated longitudinal and
[(b) and (d)]transverse [I'-point
frequencies of the ZGNR in de-
pendence of nanoribbon width.

(c) (d)

Filled (red) squares are fundamen-
tal oscillations and empty symbols
are overtones. Solid black lines
connect overtones of equal order n
for different ribbons. Filled gray

1200
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(o
(=}

1000

W
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(=}

% 8-LA 800

~
S
[a»)
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400
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200

N

symbols connected with dashed
lines show the results of calcula-
tions of Yamada et al. (Ref. 23)
for comparison. The experimen-

3 TA tally determined E,, mode fre-

quency of 1580 cm™! is indicated
by thick (brown) dashed lines.
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FIG. 9. Phonon dispersions of hydrogenated N-ZGNRs with N
=3-6 obtained by (a) DFT and (b) MO/8 calculations done by
Yamada et al. (Ref. 23). The dashed lines in (a) indicate the fourth
acoustic mode, typical for 1D crystals. Dashed lines in (b) are out-
of-plane vibrations.

persions of N-ZGNR with N=3-6. As can be seen, the dis-
persions feature the characteristic fourth acoustic mode of
1D structures, which is a rotational mode around the z axis.
The displacement pattern of this mode at the I" point corre-
sponds to the displacement pattern of the mode we classify
as 1-ZA. However, the 1-ZA in our calculations has a fre-
quency w;z,a=5-20 cm™!, which we believe results from
the presence of the hydrogen passivation and possibly also
from numerical errors. The two out-of-plane acoustic modes
converge swiftly for increasing ribbon widths, being notice-
ably separated for the 3-ZGNR but almost degenerate for the
6-ZGNR, closely resembling the ZA mode of graphene. An
interesting fact was found for the phonon modes at the X
point: In armchair nanotubes the phonon modes are pairwise
degenerate, i.e 6(n—1) phonon modes in (n,n) CNTs with
odd n and all modes in (n,n) CNTs with even n, at the X
point due to symmetry.’ Therefore, we might expect 6(N
—1) pairwise degenerate and six nondegenerate modes in
N-ZGNR with odd N. Similarly, all phonon modes of
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N-ZGNRs with even N should be pairwise degenerate. How-
ever, we do not find a similar degeneracy for the zigzag
nanoribbon dispersions we studied so far. In fact, the calcu-
lated phonon spectra of N-ZGNR with odd N consist solely
of modes that are pairwise degenerate at the X point. In con-
trast, the phonon modes of N-ZGNR with even N are largely
nondegenerate at the edge of the Brillouin zone.

We want to compare our results with previous calcula-
tions by Yamada et al.?® They applied a molecular orbital
method, which uses force fields based on Hiickel theory, i.e.,
a semiempirical approach.3® This approach was shown to be
efficient for calculating the vibrational properties of polycy-
clic aromatic hydrocarbons such as graphene. In this ap-
proach, the topology of the structures of interest is fixed
consisting of hexagons with C-C bond lengths of 1.39 A and
C-H bond lengths of 1.048 A. As can be seen in Figs. 8 and
9(b), we find general agreement but some deviations, in par-
ticular, for the longitudinal modes. We suggest the geometry
relaxation that we performed in our calculations to be the
source of these deviations.

IV. CONCLUSION

We investigated the vibrational properties of graphene na-
noribbons with density-functional theory. We showed that
the I'-point phonons of graphene nanoribbons with armchair-
and zigzag-type edges can be interpreted as six fundamental
oscillations and their overtones, which show a characteristic
nanoribbon width dependence. We further found a family
dependence for the fundamental modes of AGNRs, which is
in correspondence to the known family behavior of the band
gaps of AGNRs.? The longitudinal-optical and transverse-
optical modes in our calculations feature a noticeable split-
ting of up to 46 cm™! and should be experimentally measur-
able, e.g., by means of Raman spectroscopy, which would be
an interesting task for future works. We demonstrated that
the I'-point phonon frequencies of nanoribbons can be
mapped onto the phonon dispersion of graphene, i.e., to an
“unfolding” of the nanoribbons’ Brillouin zone onto that of
graphene. The edge magnetization and the resulting opening
of a band gap in zigzag nanoribbons has only a small influ-
ence on the phonon spectra. The behavior of overtones and
fundamental modes for nanoribbons of increasing width was
studied and a comparison of our results for ZGNRs with past
studies performed.
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